Steerable ePCA: Rotationally Invariant Exponential Family PCA
نویسندگان
چکیده
منابع مشابه
ePCA: High Dimensional Exponential Family PCA
Many applications involve large collections of high-dimensional datapoints with noisy entries from exponential family distributions. It is of interest to estimate the covariance and principal components of the noiseless distribution. In photon-limited imaging (e.g. XFEL) we want to estimate the covariance of the pixel intensities of 2-D images, where the pixels are low-intensity Poisson variabl...
متن کاملSteerable PCA for Rotation-Invariant Image Recognition
In this paper, we propose a continuous-domain version of principal-component analysis, with the constraint that the underlying family of templates appears at arbitrary orientations. We show that the corresponding principal components are steerable. Our method can be used for designing steerable filters so that they best approximate a given collection of reference templates. We apply this framew...
متن کاملBayesian Exponential Family PCA
Principal Components Analysis (PCA) has become established as one of the key tools for dimensionality reduction when dealing with real valued data. Approaches such as exponential family PCA and non-negative matrix factorisation have successfully extended PCA to non-Gaussian data types, but these techniques fail to take advantage of Bayesian inference and can suffer from problems of overfitting ...
متن کاملSemi-parametric Exponential Family PCA
We present a semi-parametric latent variable model based technique for density modelling, dimensionality reduction and visualization. Unlike previous methods, we estimate the latent distribution non-parametrically which enables us to model data generated by an underlying low dimensional, multimodal distribution. In addition, we allow the components of latent variable models to be drawn from the...
متن کاملRotationally invariant family of Lévy-like random matrix ensembles
We introduce a family of rotationally invariant random matrix ensembles characterized by a parameter λ. While λ = 1 corresponds to well-known critical ensembles, we show that λ = 1 describes ‘Lévy-like’ ensembles, characterized by power-law eigenvalue densities. For λ > 1 the density is bounded, as in Gaussian ensembles, but λ < 1 describes ensembles characterized by densities with long tails. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Image Processing
سال: 2020
ISSN: 1057-7149,1941-0042
DOI: 10.1109/tip.2020.2988139